
The Magazine for Professional Testers

September, 2009

IS
SN

 1
86

6-
57

05
 		

w

w
w.

te
st

in
ge

xp
er

ie
nc

e.
co

m
		

fre
e

di
gi

ta
l v

er
si

on
		

pr
in

t v
er

si
on

 8
,0

0
€	

pr
in

te
d

in
 G

er
m

an
y

Agile Testing

7

© iStockphoto/Mlenny

61The Magazine for Professional Testerswww.testingexperience.com

Automated Integration Testing in Agile Environments
by Slobodanka Sersik & Dr. Gerald Schröder

© iStockphoto.com/markgoddard

The agile approach in software projects is
not compatible with most of the established
quality assurance processes. Quality assur-
ance traditionally requires a finished product
that must be verified against a finished speci-
fication. In agile projects, however, where re-
sponse to change is more valuable than a fixed
specification, a moving target must be verified
against changing circumstances. Yet, testers
are not able to develop test plans or automate
tests more than one iteration in advance. Thus,
automation of integration tests in agile envi-
ronments is a difficult task. On the other hand
the agile process supposes that testing happens
closer to the developers in space and in time.
Therefore, if the test automation effort is dis-
tributed among both developers and testers and
if the test automation complexity is decreased
through modularization and abstraction of re-
usable test components, thorough integration
testing can be accomplished.

A large and growing variety of tools support
automation of integration tests. Yet, most of
them rely on GUI scripting by simulating us-
ers. But how can we automate integration tests
for systems that

are highly automated themselves and do •	
not offer user interfaces?

have use cases which are triggered by ex-•	
ternal systems?

interact with external systems which can-•	
not be included in the manual testing?

offer several different user interfaces, and •	
yet use a common back-end system?

In this article we will present a testing model
we designed to specifically address these is-
sues.

For better illustration of the problem and after-
wards its solution, let’s consider a simplified
order and stock management system. It con-
tains multiple front-ends: (1) an ordering user
interface offered as web interface used by the
consumers, and (2) a stock management desk-

top application used by the shipping depart-
ment. Additionally, the system is dependent
on an external system – the bank that actively
sends bank transfers.

One typical story in the system under test (SuT)
that defines a standard test case is presented in
Figure 1, and can be explained through the fol-
lowing activities:

Customer places order containing goods 1.	
and quantities interactively via web
front-end

Order management system generates or-2.	
der reference number presented to cus-
tomer

Customer initiates bank transfer giving 3.	
order reference number

Bank sends bank transfers to order man-4.	
agement system

Order management system matches un-5.	

paid orders against bank transfers using
order reference numbers

For each paid order, a shipment order is 6.	
being presented to the stock manager in
his desktop application

How can we test this system efficiently and ef-
fectively? It can be done following a simple,
nevertheless powerful model that differenti-
ates four test development areas: (1) describ-
ing test scenarios spanning different system
components, (2) implementing reusable test
steps to create different test scenarios, (3)
building simulators for machines or systems
that cannot be integrated in the automatic in-
tegration test, (4) implementing adapters that
allow a test scenario execution engine of an
integration testing tool to control the different
system components (or simulators).

Order and stock
management

system

1. places order
2. sends
 bank transfers

3. triggers bank transfer
 containing oder reference

4. sends
 bank transfers

5. matches
 payments
 with orders

6. sends
 shipment order

Bank

€

©
 iS

to
ck

ph
ot

o.
co

m
/b

ro
wn

do
gs

tu
di

os

Figure 1: System under Test - Order and stock management system

62 The Magazine for Professional Testers www.testingexperience.com

Bank

€

Standard ordering process

Trigger bank
transfer

Read shipment
order

Place order

Order and stock
management

system

Order data

Shipment Bank transferSelect goodSelect goodSelect good

√ √

√ √ √

Describing test scenarios spanning dif-
ferent system components
To distribute the testing complexity across dif-
ferent roles, domain testers and developers,
the test description should be separated from
test automation. In this way the domain testers
can assemble and modify test scenarios using
already available test steps implemented by
the developers.

The goal of integration tests is to check the
correct interaction between system compo-
nents that have usually been coded by differ-
ent people. Therefore testers who know and
understand the overall system should prepare
test scenarios spanning different system com-
ponents and modularize them in test steps. The
system developers themselves or test coders
can implement these test steps.

In the order and stock management system de-
scribed above the test scenario might be mod-
ularized as follows: place order, trigger bank
transfer and read shipment order.

Implementing reusable test steps that
are used to create different test sce-
narios
Integration tests need parameterized reusabil-
ity. Why? Integration tests consist of differ-
ent test scenarios that contain the same tests
steps but differ in their context. For example,
the placement of orders differs in the goods
ordered. We do not want to implement the
ordering process (list all goods, select a good
from list, enter quantity, add to shopping bas-
ket, select next good, ...) for each integration
test scenario that involves ordering of goods.

So we create a reusable test step „place order“
that is parameterized by the goods and quanti-
ties as test data. This step may be reused as a
step in different test scenarios, parameterized
with different test data.

Additionally, this method follows the DRY
(Don’t Repeat Yourself) principle that suggests
a single point of maintenance. Consequently,
technical changes such as new security query
while ordering will be maintained in one place
only, and not in each test case.

Building simulators for machines or sys-
tems that cannot be integrated in the
automatic integration test
Simulators in integration testing are not just
behavioral mocks (i.e., reacting to external
stimuli); they have to be controlled explicitly
depending on the test scenario. For example,
the order system presents to the customer via
its web interface an order reference number just
generated to be used for payment. The integra-
tion test engine has to supply this order refer-
ence number to the bank simulator so that it
may send actively (i.e. without being pulled by
the order management system) a bank transfer
containing this order reference number (other
test scenarios may contain a distorted order
reference number or a wrong sum).

Implementing adapters that allow a test
scenario execution engine to control the
different system components (or simu-
lators)
Integration tests have to be robust against tech-
nical changes. We therefore advise that adapt-

ers are used in order to “wrap” the interfaces to
the system under test. For example: the order
management system changes its back-end in-
terface to select goods from RMI to SOAP. Do
we have to fix each integration test scenario?
Hopefully not. We have abstracted away the
placement of orders in an adapter used in all
test steps that select goods.

The simulators are also controlled through
adapters by a test execution engine. The adapt-
ers trigger active behavior and inject data into
the simulators that would have been supplied
by humans. Using adapters is convenient if the
simulator is being replaced by another simu-
lator or even the real system. In that case we
only need to modify or exchange the adapter
instead of the test steps.

Conclusion
Considering these four recommendations, the
integration test for the depicted example – or-
der and stock management system – is shown
in Figure 2. Using the presented model we
can build flexible and modularized tests that
fully comply with the requirements of an agile
project environment. We developed the model
in various projects that focused on highly au-
tomated processes. Our experience showed
that our approach provides an effective and
cost-efficient way to build, maintain, execute
and analyze automatic software tests. The in-
troduction of this model in an agile project is a
win for all four parties:

Win for testing team: faster test automa-•	
tion and extreme flexibility on changes

Win for developer team: prompt feed-•	

Fi
gu

re
 2

: I
nt

eg
ra

tio
n

Te
st

 - O
rd

er
 a

nd
 st

oc
k m

an
ag

em
en

t s
ys

te
m

Test data Test scenario

Test step

Adapter

SuT Simulator

63The Magazine for Professional Testerswww.testingexperience.com

back about software quality and higher appreciation of testing efforts due to
own contribution

Win for management: lower costs due to on time failure detection and faster •	
test automation

Win for customers: on time delivery, high quality system•	

The integration testing model is implemented in an automated testing framework:
the open source project iValidator (ivalidator.org).

Slobodanka Sersik is Senior Software
Developer and Consultant in InfoDesign
OSD GmbH. Beside her engagement on
customer projects as software developer
and architect, her responsibilities focus
mainly on automatisation of integration
and system tests. She manages currently
the further development of the Open-
Source Testing Framework iValidator.

Dr. Gerald Schröder is Senior Software
Developer and Consultant in InfoDesign
OSD GmbH. The focus of his work is put
on Software-Engineering and Software-
Architectures in large Java projects.
Beyond that he is one of the main archi-
tects and developers of the OpenSource
Testing Framework iValidator.

Biography

The Java GUI Testtool

Quality First Software GmbH
Tulpenstraße 41

82538 Geretsried
Germany

Fon: +49. (0)8171. 91 98 70

System & load testing
Robust & reliable

Easy to use
Cross platform

Well-established
Swing/SWT/RCP & Web

www.qfs.de

»I have the simplest of tastes.
 I am always satisfi ed with the

 Oscar Wilde

BEST.«

